
Nuclear Physics B164 (1979) 171-188 

0 North-Holland Publishing Company 

GAUGE FIELDS AS RINGS OF GLUE 

A.M. POLYAKOV 
Landau Institute for Theoretical Physics, USSR 

Received 24 September 1979 

In this paper we take the view that gauge fields can be considered as chiral fields on a 

loop space, both in classical and in quantum theories. As a result, gauge interactions are 
interpreted as propagation of the infinitely thin rings formed by the lines of color- 

electric flux. Equations of motion governing this propagation are derived. In the three- 

dimensional case some higher conserved currents in the loop space are obtained, indicat- 

ing that hidden symmetry is present in the theory. In the four-dimensional case the 

question of hidden symmetry remains unclear. Ward identities in the loop space are ob- 

tained and their mathematical structure is investigated. Possible extensions and applica- 

tions of these results are discussed. 

1. Introduction 

There can be no doubt now that gauge fields play a very fundamental role in 

Nature. It is even conceivable that all existing interactions are mediated by gauge 
bosons. At the same time the theory of gauge fields is not in good shape. Of course 

we know how to perform some standard things like a perturbation theory, and we 
even have some understanding of new concepts, like topological excitations of 
fields. But we still lack methdds for answering questions like which subgroups of a 
gauge group are confining, and which subgroups are spontaneously broken. These 
questions are of primary importance both for quantum chromodynamics and 
quantum flavordynamics. So, a better understanding of gauge-field dynamics seems 
essential to future progress. 

In this paper I shall try to present some small steps in this direction. Though the 
results, if any, are very modest, I believe that the methods and concepts with which 
I work are basically adequate and may lead eventually to some valuable under- 
standing. 

The basic idea is that gauge fields can be considered as chiral fields, defined on 
the space of all possible contours (the loop space) [ 11. The origin of the idea lies 
in the expectation that, in the confining phase of a gauge theory, closed strings 
should play the role of elementary excitations [2,3]. In contrast, in conventional 
field theories, the elementary excitations are just point-like particles. This observa- 
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tion makes the formulation of the basic equations in loop space both natural and 
adequate. AS a result we get equations that reveal a striking similarity between 
chiral and gauge fields. The analogy exists both in quantum and in classical 
theories. In the case of chiral fields the interaction can be understood in terms of 
propagation and collisions of massless Goldstone particles, which acquire mass (and 
thus restore the symmetry). We will show that in a similar fashion the interaction 
of gauge fields can be represented as a propagation of infinitely thin bare strings 
with zero slope that eventually acquire non-zero slope. 

One can hope that since these gauge strings arise from a theory that is in many 
respects unique, the interaction between strings must be very special and possess 
some hidden symmetry. This hope is substantiated by the fact that ordinary chiral 
fields do have such a symmetry, being in fact completely integrable (that means 
that the number of conserved integrals is equal to the number of degrees of free- 

dom). 
Whether this is really the case with gauge fields is not completely clear. It has 

been shown [l] on the classical level in three-dimensional Yang-Mills theory that 
there exists a set of conserved currents in the loop space. At the same time, after 
many attempts I am convinced that there are no non-trivial, conserved (in the usual 
sense) integrals in gauge theories. However, it is the functionally conserved currents 
that are relevant for string interactions. The main unresolved problem is the exten- 
sion of these results to four dimensions and to quantum theory. Not being able to 
resolve this problem, we describe in this paper some possible approaches to it. 

Another possible use of our representation of gauge theories might be its applica- 
tions to different approximation schemes (such as large4 or strong coupling 
expansions). We will comment on that later. 

Since two-dimensional chiral fields play an important role in our discussion we 
begin this paper with a short review of their properties (sect. 2). Then we discuss 
classical conserved currents in gauge theories (sect. 3). After that (sect. 4) an 
analysis of the renormalization properties of fields on loop space is given. In sect. 5 
we derive the quantum equations of motion and Ward identities in loop space. In 
sect. 6 we analyze some new mathematical objects that appear in loop space, such as 
the b-function, integration, etc. At the end of this paper we speculate about the 
directions of future progress. 

2. Chiral fields in two dimensions 

Chiral fields are described by the matrix field g(x) E G, where G is some Lie 
group. The lagrangian is given by 

L = 5 Wa,d(x) a s(x)) 
0 
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(2.1) 

A,(x) = g-‘(x) $.&a, . 

The equations of motion for the lagrangian (2. I) are given by 

afiP(x) = 0, 

a,,4,(:u) ~ a,A,(_y)+ [A,,A,] = 0. (2.2) 

The second equation in (2.2) expresses the geometrical constraint (zero curvature) 
that follows from the definition ofA,. In the case of two-dimensional space-time 
this theory is known to be completely integrable [4,5]. That means that there are 
infinitely many non-trivial conserved currents in it. For the sake of completeness 
and for establishing notation I will demonstrate this fact briefly. The first current, 
J;)(x), is just A,(x) itself. To find the second one J?)(x), let us study the 

expression 

J/?(x) = QV&X(X) + M,(x), x(x)1 7 (2.3) 

where x(x) is to be determined. For conservation of J’,)(x) we require 

a J(*)(X) = ePvddV + [A,, a,x] P/J 

= [A,, a,x- &A~] = 0. (2.4) 

So, we have to define x(x) by 

x(x)=$J e&I,~~, (2.5) 

where by the first of eqs. (2.2) the function x is independent of the contour of 
integration in (2.4). In order to get a general expression for the higher currents, one 
notices that eqs. (2.2) are the consequence of the consistency of the Lax pair of 
equations [4,5] : 

(a, + YEpvav) 4 = r-4,, 41 (2.6) 

Here y is arbitrary parameter. It is trivial to check that the compatibility condition 
(equality of cross second derivatives) 

[a, + YePhah - A,, a, + YeVAah - A,] = 0 (2.7) 

is equivalent to the system (2.2). To find the currents, we use the expansion 

‘?%x, 7) = 1 + kc, @k(x) Y-k. 

From (2.6) we have 

(2.8) 
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Then, the conserved currents are given by 

@‘(x) = e/.lvdv@k. (2.10) 

It is known that the existence of these currents determines the S-matrix of the 
chiral fields [6]. Now let us comment on the quantum version of this theory. Two 

things are known. First, analyses of the anomalies in the continuum limit [7,8] 
have shown that the currents remain conserved, although the currents themselves 
are modified. These analyses neglected possible topological anomalies, i.e., all total 
divergences. Second, I have found the Lax representation for the lattice version of 
the chiral fields. However, this representation exists only for the general linear 
group GL(n, R). After several attempts I am convinced that the chiral fields on the 
lattice with O(n) or SU(n) groups are not integrable. All this implies that one shoulc 
be very careful with topological anomalies in the continuum limit. They present a 
problem still to be resolved. 

3. Loop space 

Now let us proceed to our main object, gauge fields. In establishing the above- 
mentioned analogy, the basic role is played by a well-known object, the element of 
the holonomy group 

Q(c) = P exp $,A, d? . (3.1) 

Here c is some closed contour that begins at some fixed point x0 and P stands for 
Dyson ordering along this contour. G(c) depends on x0, but this will be implicit in 
our notation. Let us consider now G(c) as a chiral field, and introduce the connec- 

tion in the loop space by the formula 

F,(s, c> = (3.2) 

Here the contour c is parametrized by the function x&s), G(c) = $(x(s)). This func- 
tional should not depend on the way we parametrize x(s), and hence 

J, Ix@(Q)1 = G [x(s)1 9 (3.3) 

dx,J.LO 
ds 6x,(s) ’ 

dx, F,(s, c) = 0 . 
ds 

From the definition (3.2) we conclude that 

SF&, c) W(s’, c) 
XJPy- 6xp(s) 

+ [F,(s, cl, Fv(s’, c)l = 0 . (3.4) 

The important result, which we will demonstrate now, is that the Yang-Mills equa- 



A.M. Polyakov ! Gauge fields as rings of glue 115 

tions take a very simple form in terms of Fp. To show this, we notice that 

S+(c) = jn ds P[exp j A, dx,,] F&X(S)) &$ P]exp 7 A, du,] &u,(s) 

0 0 s (3.5) 

From this we derive 

s 

Q(s, c) = P exp 
J 4d-G. 
0 

We see that F,(s, c) has a natural interpretation: it is a Lorentz force, transported 
parallel to the initial point of our contour. From (3.6) it is easy to get the following 
identity: 

Ws) w + [F,(d), F,(s)] = qs, c)(yJ&(x(s))) R-k c> 7 

P 

x 6(s - s’) ) (3.7) 

for s1 Gs. Comparing with (3.5) and using the Yang-Mills equations, we find the 
following results for F,(s, c): 

~F,(s, c) fK(s’, c) 
6X”(S’) 6x,(s) 

+ [FJs, c),FAsl, ~11 = 0 > 

b,(s) --j-y F/h, c) = 0 3 

~F,(s, c) = o 

~+J(s) 
(3.8) 

The interpretation of eqs. (3.8) becomes obvious after comparing them with eqs. 
(2.2). We see that the gauge fields with non-zero field strength (or curvature) in 
ordinary space define a chiral field with zero curvature in loop space. It is very 
natural to expect, then, an infinite number of contour currents, analogous to 
(2.9) satisfying the equations 

(3.9) 

To verify this expectation, we first consider three-dimensional space-time. Just as 
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before we identify .I;$, c) with F,(s, c) and look for Jr)@, c) in the form 

J/p(s, c) = fP”h dx,o 
& FA(S? c) + Fp(s, c), x(s, c)l . 

From this we find 

SJ/y(s, c) d-G(s) WA c) 
__ ___ + 

6X 
6x,(s) = Ewh ds 6x,(s) [ 

F,(s, c), ~ 
&(s) 1 

= -Ep”h 2 [F/As), F*(s)1 + ppcs. cl, $I= 0 
P 

For eq. (3.1 la) to be satisfied it is sufficient to find a x(s, c) such that 

6x6, cl 
____ = QLvh 

b”(S) 
qs) 

- FA(S, c) + g(s, c) &$. 
ds 

(3.10) 

(3.1 la) 

(3.1 lb) 

(Here g is an arbitrary functional.) Now we have to prove that eq. (3.1 lb) is indeed 
consistent, i.e., that the functional x(s, c) exists. It is necessary to check that the 
quantities 6*x@, c)/Sx,(s’) &x,(s”) possess t_L -+ V, s’ + s” symmetry, or, better, that 
this symmetry is consistent with eq. (3.1 lb). Let us notice that from (3.1 lb) it 
follows that 

6x6, c) 
F/As7 cl = QAb(s) ~ 

Ws) ’ 
tv(s) = 2 (3.12) 

Taking the variational divergence and noticing that differentiation of tV(s) gives no 
contribution, we get 

6F,(s, c) - 0 . 

6x,(s) 
(3.13) 

So we see that, due to the equations of motion, the necessary condition for con- 
sistency is satisfied. The sufficiency of this condition can also be proved. In principle 
it is not difficult to derive the higher conserved currents. Just as in case of two- 
dimensional models they are contained in the identity 

( 
6 6 

~z,(s) 
- + -Fpdv(S) &g-(q 1 tis, CT 7) = F,(s, ch a, cl1 7 

A 
(3.14) 

where y is an arbitrary parameter. Again the necessary and sufficient condition for 
the function @(s, c, y) to exist is the fulfillment of the equations of motion. In the 
derivation of the conservation laws, one has to remember that second derivatives 
of the functionals are usually singular (cf eq. (6.1)) but it is possible to check that 
these singularities do not effect our derivation. 
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4. Renormalization of the loop fields 

In this section we shall consider the problem of divergences and renormalization 
for the contour averages. It is far from trivial since the loop fields are non-local. 
So the best thing we can do is exploit ordinary perturbation theory and analyze 
all possible divergences in this framework. Let us begin with the first contribution 
to (Tr $(cj), gives by the diagram of fig. 1. It is given by 

(Tr G(c))(‘) - 
5.f 
c c 

:_?)a =.f(c) . (4.1) 

The integral here is clearly divergent. If the theory were cut off, we would have 

(4.2) 

(Here a -’ is the cutoff.) It is very convenient to chose a parametrization such that 

dx 2 x2= __J 

( 1 ds 
= const , X.2=(). 

Expanding the integrand in (4.2) in powers oft we get 

f,,,(c) = ~dsi2(s)~~2(~,“:2 + a2 + finite terms 

=:-f p 
ds x + finite terms =iL(c) + finite terms . (4.4) 

(Here L(c) isthe length of c.) The physical meaning of (4.4) is very simple. Recall 
that (Tr G(c)? can be understood as the effective action for a test particle being 
guided along the trajectory c. The divergent part of this effective action is just the 
mass renormalization of the test particle. So, this argument leads us to the conjec- 
ture that 

(Tr G(c)) = e-YL(C)‘aGren(c) , (4.5) 

where G,,,(c) is finite, provided it is expressed in terms of the renormatized coupl- 
ing constant. We shalt analyze this conjecture a little later. Now we have to remark 
that eq. (4.4) is true only for the smooth contours. If the function dx,/ds has jumps, 
the result wit1 be different. Let us consider for example the contour in fig. 2 with 

cTr g/(C)>“‘= CD 
Fig. 1. First perturbative correction to the loop average. 
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Fig. 2. Contour with a corner. 

one angle y in it. In this case the extra divergent contribution in (4.1) comes from 
the vicinity of the corner at the point so. Expanding X&V) near so we get 

dr dr’ 
f(c) = G+(%)“-(so”+ _Y_(so) r’) Qa2 (4.6) 

plus a contribution from the smooth part of the contour. 
The logarithmic contributions coming from these two terms combine to give 

f(c) = >(c) + (7 cot y - 1) log f t finite terms 

(Here (i+(so)X_(so)) = cos y.) The qualitative nature of the extra term in (4.7) 

is associated with the violent brensstrahlung that takes place at the corner. This 
phenomenon plays an important role in the interaction of loops, as we will see later. 
Let us return now to the discussion of the conjecture (4.5). To perform higher- 
order calculations it appears to be very helpful to use dimensional regularization of 
all integrals. By that we mean that the contour itself has a fixed number of dimen- 
sions, but the propagator is chosen to belong to 4 - E dimensional space. Diver- 
gences, as usual, are replaced by the poles in E. This trick is convenient, since the 
linear divergence in (4.1) disappears and the conjecture (4.5) is replaced by the 
simple statement that all poles in E can be absorbed in the charge renormalization. 
Let us check this in the fourth order of perturbation theory. We have 

(Tr G(c)) = 1 +g$r(c) +gzf2(c) + . . . . 

Our conjecture concerning renormalization in this order means that 

b 
f2(c) = -fi(c) + terms finite as e + 0 

E 

(4.8) 

(4.9) 

(where b = !$ C2(G) (167~~)~~). If (4.9) is true then by redefining the coupling con- 
stant we are able to cancel the divergent part of (Tr G(c)). The computation leading 
to (4.9) will not be given here. We have verified that (4.9) is true, but will not 

present the computation here. We merely note that up to fourth order our reformaliza- 
tion conjecture checks. We lack, however, a general proof of it and can present here 
only some non-rigorous arguments. Let us examine the divergent part of the log 
(Tr G(c)) E W(c), which is the effective action for the test particle guided along c. 
Let us guess that this divergent part depends locally on the trajectory x(s). The 
linearly divergent part of W(c). M’,(c), should be parametrization invariant and 
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have dimension one. This will be the case only if 

W,(c) = const smj ds = const . L(cj/a . (4.10) 

As far as the logarithmic divergence is concerned, the only local expression with 
dimension zero is given by 

WO(cj = const(Jm ds) log i, (4.11) 

if the parametrization is fixed by the condition a*(s) = 1. However, up to now I 
haven’t found any indication for any non-analytic dependence on 2. So it seems 
very probable that the logarithmic divergence is absent, however, this argument 
needs to be considerably improved. 

5. Ward identities in the loop space 

In this section we derive a set of identities for the Green functions in loop space 
which follow from the equations of motion (3.8). Since these equations have the 
form of a conservation law, the corresponding identities for the Green functions will 
resemble Ward identities in the usual field theory. As before, we begin our discus- 
sion by considering two-dimensional chiral fields. In this case, by using the standard 
trick of shifting variables in the functional integral, it is easy to get the result 

$c4;mw xdx2) . . . xgfcd . . . xg+ti,)) 
IJ 

= c qz - k&o,) . . . x xQg(xkj . . . gfij,j) 
k 

-q 6(z - Ykkbl) . . . g+tik) ha . . . g+b,j) (5.1) 

Here 

g(z) is a chiral field, Xn are generators of the group, and X stands for the direct pro- 
duct. In chiral field theory. the Wards identities contain sufficient information to 
determine the Green functions. That is because in this case, we have the extra con- 
dition g’(x) g(x) = I. Parametrizing g(x) in some way, and substituting it into (5.1 j, 
we get a perturbation expansion for the Green functions. Let us take, for example 

g(x) = eieoQCx) = 1 t ie,$ t ._. , 

A, = a,4 + e0 [t4 a,4 . . . (5.2) 
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where G(x) is some hermitian field. Substituting (5.2) into (5.1) we get in the lowest 
approximation 

a%+V(x> &_,v), = 6,&(x - v) ) (5.3) 

indicating that in this approximation we just have free Goldstone bosons. In the 
next approximation we would obtain the current algebra interaction of these 
bosons. Higher-order terms are described by’ Feynman diagrams with massless 
propagators. In the two-dimensional case we have an infinite number of extra Ward 
identities associated with the higher currents. On the mass-shell these identities 
determine the S-matrix almost unambiguously [7]. This should also be the case 
for the Green functions, but that has not been demonstrated yet. 

Our strategy for the gauge fields will be very close to the one described above. 

We begin with the derivation of Ward identities for the loop averages. The next 
step will be to derive a gauge-invariant perturbation expansion from these identi- 
ties. The ultimate purpose of the whole approach is to determine the Green func- 
tions in the loop space through the use of the higher Ward identities. This goal 
has not been achieved yet. 

The first important intermediate formula, which we need in order to derive 
Ward identities, is the following. Let us take some contour C with origin x and let 
us denote by $(x, y, C) the ordered exponent of parallel displacement from the 
point x to the pointy. It is assumed that y E C. Then, by shifting variables in the 
functional integral, we obtain 

(V,E”,,(z) $0, x, C)) 

= s dyv@ - _vYG4x, Y, Cl X”iKv, x, C)) 

If we now recall eq. (3.7) we get the desired Ward identity: 

&qh c> NCi) x ti(c2) . ..) 

P 

+ Wp(s’, cl F/AS, C)l”rL(Cl> x J/cc21 ... 9 

Here 

= W - s’) j-W+) - ~dfW(s) i&N 

* b+b(q) x . . . x X”(s, c) J/(Q) x . ..) . 

Aa@, c) = $(x, x(s)) h”$-!(x, x(s)). 

(5.4) 

(5.5) 

This equation can be further simplified by symmetrizing in s and s’. After that 
procedure the first term on the right-hand side disappears and we are left with the 
equation 

6 

6x,(s’) uqs, c) J/(Cl) x . ..) + (s * s’) 
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= 26(s - s’) JdtG(x(s) r 4’,&))(+)jl,(t)) 

* ($(c,) x . . . x X”(s, c) ‘Q/(Q) x ..J ) (5.6) 

which is direct analog of (5.1). Let us examine the perturbation expansion that fol- 
lows from (5.6). To do this, as before we represent 

G(c) = eigo@ = 1 + igo@ - ig&$’ t . . . , 

w 
[ 1 @ +. =-----fig0 $,-- 

6x,(s) 6x,(s) . . . 

(Here 4(c) is an hermitian matrix.) In the lowest order we have 

(5.7) 

62 
6x,(s) 6x,(s’) 

(Q”(c) 4b(3) 

= 6,&s - S’) $-6(X(S) - _I’) i,,(S) dv,,, . (5.8) 
c 

It is easy to find a sblution for (5.8) that plays the role of the bare Green function 

in the loop space. Namely, 

(5.9) 

There are subtle questions concerning the regularization of the integrals and d-func- 
tions, which we shall examine later. Another equivalent set of equations for the 
fields in loop space can be obtained from the relations 

-f-- W(c)) = u;,(s, cl 9(c)) , 
6z,(s) 

62 
6zJs) 6z,(s’) (NC)) 

= @‘(F,(s, c) F,(s’, c)) Q(c), + JdMt) X(s)) 6(x(s) -x(r)) 

* (Xa$(c,,) Xa$(C2t)) 6(s - s’) . (5.10) 

Here the symbol P means the usual ordering in s and s’, clt and czT are parts of the 
contour c, which, due to the &-function in (5.10), necessarily have an intersection 
point. Eq. (5.10) was obtained by the use of (5.4) and (3.7), Here again we post- 
pone the important discussion of the definition of the b-function in (5.10). We can 
simplify eq. (5.10) even more by introducing the operator that picks up the terms 
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containing S(s - s’) in the second variational derivative. Namely let us define 

dt 
6x,@ + if) 6X& - ;r> . 

(5.11) 

Using (5.11) and (5.10) we get 

&) (Tr G(c)) = ~W4s) x(0> W(s) -x(O) 

- (XV(c 1 t) ?V(C2A) . (5.12) 

A similar equation was independently obtained by Makeenko and Migdal [9] using 
a somewhat different approach, who also found the large-IV limit for it. It is still a 
question whether the operator a2/dx2(s) contains sufficient information about the 
second variational derivative. 

Now we turn to the analysis of the h-function in (5.12). The definition of this 
h-function depends on the regularization scheme. If we admit dimensional regulariza- 
tion, then (Tr G(c)) is presumably finite [after charge renormalization (see sect. 4)] 
and to get finite results on the right-hand side of eq. (5.12) we have to define 

1 
G+) -x6’)) = jrnd’d - A),x(s) _ X(s,),a 1 (5.13) 

where d is the dimensionality of space and the expression on the right-hand side 
should be understood in the sense of analytic continuation in A (see ref. [IO]). Let 
us first examine the case d = 2. In order to understand the meaning of (5.13) we have 

to integrate it with smooth test functions G(s) and x(s). We have 

G(s) x(x’) &(x(s) - x(s’)) ds ds’ 

= (5.14) 

Singularities in A in (5.14) arise from the points where x(s) = x(s’). We now have to 
distinguish two cases. Let us first assume that the contour is simple, i.e., it has no 
self-intersections and it is smooth everywhere. We also use the parametrization 
(4.3). Changing variables we get 

s 
G(s) I 6(x(s) - x(s’)) ds ds’ 

= hJ” - A>S rc/(s) ;TA+ r, ds dr . (1 + o(p)) . (5.15) 

The integral in (5.15) does not have a singularity at A = 2 if it is understood as an 
analytical continuation. Hence, for simple contours 6(x(s) -x(s’)) = 0 (no self- 
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intersections). If there is a self-intersection, say, if x(sr) = x(s*), the result is differ- 
ent. A non-zero contribution comes from the neighborhood of the self-intersection 
point. Taking s = sr + r and s’ = s2 + r’ and expanding in r and r’ we obtain 

J G(s) x(s’) 6(x(s’)) ds ds’ 

(? - A) + (sr ft sa) . 

An easy evaluation of the integral gives 

6(x(s) -x(s’)) = Ie&Js,) &&)I-’ 

x {S(s - s,) 6(s’ - s2) + 6(s’ - sa) 6(s - sr)} 

(5.16) 

(5.17) 

(here y is the angle of the self-intersection). 
In the four-dimensional case (d = 4) similar manipulations give the result 

6(x(s) - x(s’)) = 0 ) (without self-intersections) , (5.18) 

6(x(s) -x(s))) = al {S(s - s,) 6(s’ - s2) + 6(s - s,) S(s’ - sz)} 

(with one self-intersection) . 

So, we see that the contour b-function is a well-defined object (with self-interac- 

tions). However, in the derivation of (5.12) we conjectured implicitly that the first 
term in (5.10) does not contain 6(s - s’). That is certainly true if we deal with the 
cutoff version of the theory. but it is far from obvious for the dimensionally 
regularized version. To clarify the question one has to analyze the short-distance 
expansion of this term and to use the definition of the b-function described above. 
We have not completed this analysis in the four-dimensional case, but it seems 
possible that for the case of simple contours this term does not contribute. If it does 
not, we get 

a2 
2 (Tr G(c)) = 0 ax (s) 

(5.19) 

(for the simple contours). Let us stress again, that (5.19) may be untrue since it is 
based on an unproved conjecture concerning short-distance behavior. It is of some 
interest, nevertheless, to point out that there exists a rather general solution of it. 
Namely, it is easy to check that 

(5.20) 
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where 

For the contours with self-intersections this ansatz has to be modified. 
It is clear that a much more detailed investigation of eq. (5.10) is necessary 

before we can effectively exploit it. 

6. Unsolved problems and possible ways to solve them 

This paper should be considered only as a proposal for a future theory. It is 

appropriate therefore to discuss here unsolved problems and perspectives of future 
investigations. 

The most important question that remains unanswered is whether a hidden sym- 

metry is present in the four-dimensional gauge theories. We have to build up the 
Lax representation analogous to (3.14). Though it has not been completed, I 
would like to introduce some mathematical notions, which should be useful for 
this task. This is the concept of the “area differentiation”, S/SU,,~(S). Geometrically 
this operation is obvious, and, as a matter of fact, has already been used by Mandel- 
stam [ 111. It is defined as a change of the functional if we attach to the contour 
an infinitesimal area 60~~. However, we need an analytic definition of this deriva- 
tive which, to my knowledge, has never appeared in literature. The definition is as 
follows. Let us consider expansion of the second variational derivative of some 
functional G(c) 

6 29(c) 
f$l(s) 6zv(s’) 

= &&, c) + N&s’, c)) d(s - s’) 

+ M&s, c) 6(s - s’) + regular terms 

(here 8 is derivative of the 6). We define 

SO(c)$dN 
6 q.l”(S) 

& c> . 

(6.1) 

(6.2) 

It is clear from (6.2) that N&s. c) is an antisymmetric tensor. Another property, 
which is easy to check, is 

(6.3) 

and, using the condition 

i,(s) WC) _ 0 

6zJs) ’ 
(6.4) 
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we get 

6@(c) h@(c) 
i,(s) N/l&> c) d=“f ZP 6o,,(s) = &z,(s) 9 (6.5) 

as should be expected from the geometrical picture. An equivalent definition (cf 
eq. (5.11)) is 

drr 
6z,(s + ;T) Fz,(s - $) . 

(6.6) 

If relation (6.4) does not hold, then (6.6) must be modified. It seems probable that 
one should look for the Lax representation in the form 

Relation (6.7) is only a tentative form, which is not completely defined since 4 does 
not satisfy (6.4), and we do not know at the moment how to define an area differ- 
entiation applicable to @(s, C, y). Furthermore it is not clear that (6.7) will be 
really equivalent to the equations of motion. It remains to be demonstrated that 
(6.7) or some similar relation really makes sense. The next interesting mathematical 
problem in the three-dimensional case is to construct explicitly the functional x(s, c) 
in (3.10) and also to investigate higher conserved currents and Backlund transforma- 
tions in loop space. We have no definite proposals on this topic at present. 

It seems very important to develop further the manifestly gauge-invariant perturba- 
tion theory outlined in sect. 5. There should exist a convenient and transparent 
diagram technique describing propagation of the bare closed strings. In contrast 
with usual diagrams we shall have surnmation over all possible contours instead of 
the usual integrations. 

Next, let us discuss the question of instantons in the string context. In the two- 
dimensional o-models it is known [ 121 that point-like instantons disturb the sys- 
tem in such a way as to create a finite correlation length. In four-dimensional gauge 
theories it is natural to expect that the major disordering effect will come from 
string-like instantons. Such instantons could be envisaged as a combination of usual 
instantons, ordered along some curve. They also can be considered as a generalized 
monopole solution (the usual monopole solution is represented by a straight line 
in four-dimensional space). It has been shown that in the abelian theory such string- 
like instantons indeed lead to confinement for large enough coupling [ 131. In 
the non-abelian case it is an open question. Further investigation of string-like 
instantons seems very important to me. 

Just as in the usual field theories the most important role is played by the free 
particle propagator, in gauge theories we have to consider the propagator for the 
free strings. An attempt was made to introduce such propagators in dual string 
theories, but they were correctly defined only for D = 26. I want to point out the 
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direction one might take to resolve this problem. Symbolically, the propagator is 
represented by 

G(c) = F) epAcs) , 
s 

(6.8) 

where the summation goes over all possible surfaces, which have the contour c as a 
boundary, and A(s) is the area of the surface s. The surfaces are supposed to be free, 
i.e., not to have self-intersections, double covering, etc. The question now is how 
to transform (6.8) into some real formula. For the usual particles we know the 
answer: namely, the standard expression for the particle propagator is 

G(x - x’) = g) eeLcp) , (6.9) 

where one sums over all free paths connecting x to x’. This can be rewritten as 

G(x-x’)=s dre-m2rJ Ox(r) exp[-j$’ dr] . (6.10) 
0 x(0)=x cl 

x(7)=x’ 

The proper time representation used in (6.10) is very convenient when using Feynman 
diagrams. We would now like to find an analogous expression for G(c). Let us 

introduce the complex plane z, and consider some region M, on it, with boundary 
r. Let us next introduce the functional integral 

F@(s), 4s)) = sQ-4~) exp( s l$i’ d2z) , 
MI- 

44s)) = 4) (6.11) 

Here we parametrize r by z = z(s), and c by x =x(s). The integral can be expressed 
through the Dirichlet-Green function of Mr. The important point is that F satis- 

fies the equations 

6F 
ia __ + $W 

6F 

6za(s) 

-=O. 
6x&? 

. 6F 6*F 
EQ+a6& = &XC(S) - - i2(s) F, 

which are consequences of 

6W . 6W 
i -tx 

%Z, 
-=o 

Qx, ’ 

SW 6W’2 .2 ( 1 - -x wa~b = hx, fi) 

(6.12) 

(6.13) 
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where 

W= 4 I MI- 
2 2 d2z . 

We see now the complete analogy between particles and strings. The role of proper 
time is played by the contour r, meaning that each point of the string has its own 
proper time. To get the propagator we have to integrate F over all possible r. It is 
not clear at the moment how to define this summation in order to get the correct 
boundary conditions. However, since we treat longitudinal degrees of freedom 
properly I don’t think that the problem with D = 26 arises. It remains to be proved, 
however. 

Let us now try to formulate what are our expectations and hopes concerning the 
future theory. First one has to find explicitly higher conservation laws in the four- 
dimensional case. Then, using the Ward identities associated with these conservation 
laws, one has to derive constraints on the Green functions in loop space. Presumably, 
these constraints will be strong enough to determine completely these Green func- 
tions or S-matrix elements associated with them. The latter indeed happens in the 
two-dimensional chiral theories. If all this fantasy becomes real, gluon dynamics 
will be solved. The question of matter and its coupling to gluons will still remain, 
but it seems to me that although we are on the right track with the interactions 

of ghrons, we don’t have any understanding of the matter multiplets or of their 
couplings. It might therefore be premature to speculate on their dynamics. Finally, 
I would like to point out that there are many valuable papers which are relevant 
for the problems discussed above and they might be useful for the future investiga- 

tion of these problems. An incomplete list of such papers, together with those 
already quoted, is given in refs. [ 14-221. 

I am grateful to A.A. Migdal and A.A. Zamolodchikov for useful discussions and 
to Aspen Center for Physics for its kind hospitality. 
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